Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 13(7): e10260, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37404703

RESUMO

Reliable estimates of population size and demographic rates are central to assessing the status of threatened species. However, obtaining individual-based demographic rates requires long-term data, which is often costly and difficult to collect. Photographic data offer an inexpensive, noninvasive method for individual-based monitoring of species with unique markings, and could therefore increase available demographic data for many species. However, selecting suitable images and identifying individuals from photographic catalogs is prohibitively time-consuming. Automated identification software can significantly speed up this process. Nevertheless, automated methods for selecting suitable images are lacking, as are studies comparing the performance of the most prominent identification software packages. In this study, we develop a framework that automatically selects images suitable for individual identification, and compare the performance of three commonly used identification software packages; Hotspotter, I3S-Pattern, and WildID. As a case study, we consider the African wild dog, Lycaon pictus, a species whose conservation is limited by a lack of cost-effective large-scale monitoring. To evaluate intraspecific variation in the performance of software packages, we compare identification accuracy between two populations (in Kenya and Zimbabwe) that have markedly different coat coloration patterns. The process of selecting suitable images was automated using convolutional neural networks that crop individuals from images, filter out unsuitable images, separate left and right flanks, and remove image backgrounds. Hotspotter had the highest image-matching accuracy for both populations. However, the accuracy was significantly lower for the Kenyan population (62%), compared to the Zimbabwean population (88%). Our automated image preprocessing has immediate application for expanding monitoring based on image matching. However, the difference in accuracy between populations highlights that population-specific detection rates are likely and may influence certainty in derived statistics. For species such as the African wild dog, where monitoring is both challenging and expensive, automated individual recognition could greatly expand and expedite conservation efforts.

2.
J Biogeogr ; 41(6): 1183-1192, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25505357

RESUMO

AIM: Competition for food among populations of closely related species and conspecifics that occur in both sympatry and parapatry can be reduced by interspecific and intraspecific spatial segregation. According to predictions of niche partitioning, segregation is expected to occur at habitat boundaries among congeners and within habitats among conspecifics, while negative relationships in the density of species or populations will occur in areas of overlap. We tested these predictions by modelling the winter distributions of two crested penguin species from three colonies in the south-western Atlantic. LOCATION: Penguins were tracked from two large colonies on the Falkland Islands and one in South Georgia, from where they dispersed through the South Atlantic, Southern Ocean and south-eastern Pacific. METHODS: Forty macaroni penguins (Eudyptes chrysolophus) from South Georgia and 82 southern rockhopper penguins (Eudyptes chrysocome chrysocome) from two colonies in the Falkland Islands were equipped with global location sensors which log time and light, allowing positions to be estimated twice-daily, from April to August in 2011. Positions were gridded and converted into maps of penguin density. Metrics of overlap were calculated and density was related to remote-sensed oceanographic variables and competitor density using generalized additive models. RESULTS: Macaroni penguins from western South Georgia and southern rockhopper penguins from Steeple Jason Island, Falkland Islands, were spatially segregated by differences in their habitat preferences thus supporting our first prediction regarding interspecific segregation. However, southern rockhopper penguins from Beauchêne Island showed a marked spatial overlap with macaroni penguins as the two had similar habitat preferences and strong mutual associations when controlling for habitat. Contrary to our predictions relating to intraspecific segregation, southern rockhopper penguins from Beauchêne Island and Steeple Jason Island were segregated by differences in habitat selection. MAIN CONCLUSIONS: Morphological differentiation probably allows macaroni penguins from South Georgia and southern rockhopper penguins from Beauchêne Island to coexist in areas of spatial overlap, whereas segregation of the two Falkland rockhopper penguin populations may have arisen from two distinct lineages retaining cultural fidelity to ancestral wintering areas.

3.
J Anim Ecol ; 83(5): 1057-67, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24846695

RESUMO

Understanding the demographic response of free-living animal populations to different drivers is the first step towards reliable prediction of population trends. Penguins have exhibited dramatic declines in population size, and many studies have linked this to bottom-up processes altering the abundance of prey species. The effects of individual traits have been considered to a lesser extent, and top-down regulation through predation has been largely overlooked due to the difficulties in empirically measuring this at sea where it usually occurs. For 10 years (2003-2012), macaroni penguins (Eudyptes chrysolophus) were marked with subcutaneous electronic transponder tags and re-encountered using an automated gateway system fitted at the entrance to the colony. We used multistate mark-recapture modelling to identify the different drivers influencing survival rates and a sensitivity analysis to assess their relative importance across different life stages. Survival rates were low and variable during the fledging year (mean = 0·33), increasing to much higher levels from age 1 onwards (mean = 0·89). We show that survival of macaroni penguins is driven by a combination of individual quality, top-down predation pressure and bottom-up environmental forces. The relative importance of these covariates was age specific. During the fledging year, survival rates were most sensitive to top-down predation pressure, followed by individual fledging mass, and finally bottom-up environmental effects. In contrast, birds older than 1 year showed a similar response to bottom-up environmental effects and top-down predation pressure. We infer from our results that macaroni penguins will most likely be negatively impacted by an increase in the local population size of giant petrels. Furthermore, this population is, at least in the short term, likely to be positively influenced by local warming. More broadly, our results highlight the importance of considering multiple causal effects across different life stages when examining the survival rates of seabirds.


Assuntos
Aves , Clima , Ecossistema , Spheniscidae/fisiologia , Fatores Etários , Animais , Regiões Antárticas , Cadeia Alimentar , Estágios do Ciclo de Vida , Dinâmica Populacional , Comportamento Predatório/fisiologia , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...